
Altair Embed®

Model-Based Firmware Development Software

Altair Embed® is a proven tool for developing embedded
systems and validating designs via simulation or
Hardware-in-the-Loop (HIL). With Altair Embed, you can
build the most complex logic quickly, deploy it easily,
and be confident it is production ready. Its model-based
paradigm ensures easy validation of complex embedded
logic, as well as providing deep support for thousands
of popular microprocessors (MCUs) from Texas
Instruments™, STMicroelectronics®, Arduino®, and
Raspberry Pi®. The generated code is highly-optimized
and compact, which is essential for low-cost MCUs and
high-speed sampling rates.

You can extend Altair Embed to develop embedded
systems on hardware not yet supported by Altair
Embed using the Core Source Code Library (available
separately). The generated fixed-point and floating-point
code can be compiled on any platform with an ANSI C
compiler.

Altair Embed expands the power Altair Embed SE—a
simulation-only version of Altair Embed—by providing
automatic code generation for embedded system
development.

When I used C code
to develop and
debug my digital
control algorithms,
it was like I was
fumbling around
a twisty maze with
high walls. When I
switched to Embed,
I got a bird’s eye
view of that maze
and a clear path
to the solution. I
will never go back
to C coding for
my digital power
and digital control
applications.

Anthony Boon
Chief Engineer

ETA Electronic Design

HIGHLIGHTS

Subsystem 1 of two sensorless PMSM motors
using sliding mode observer estimation of
rotor position. Sample rate is 10 kHz running
both motors on a Piccolo F28036 with 50%
utilization.

•	 Intuitive graphical interface for
simulation of embedded systems

•	 Rapid prototyping and code
generation for Texas Instruments,
STMicroelectronics, Arduino, and
Raspberry Pi MCUs, DSPs, and DSCs

•	 Automatic programming of on-chip
peripherals

•	 Production-quality C code with
automatic scaling of fixed-point
operations

•	 Algorithm validation using off-line
simulation

•	 Automatic compilation, linking, and
download of algorithm to the target

•	 JTAG hotlink for target-in-the-loop
verification

 •	 Retain the Embed GUI while the
algorithm executes on the target

2

MODEL-BASED FIRMWARE
DEVELOPMENT
Using Embed, you can build a model of
your entire system, including the control
algorithm and the plant. The controller
system can be built in scaled, fixed-point
arithmetic, while the plant is built in full-
precision, floating point arithmetic.

Model Construction
For model construction, Embed provides
over 200 mathematical, engineering,
and scientific blocks, allowing you to
realize systems of any complexity. The
following libraries include blocks that
address specific embedded development
requirements :

•	 TI C2000 Motor Control block library
•	 On-chip peripheral block libraries
•	 Fixed-point block library
•	 eMotor block library

TI C2000 Motor Control Blocks
The TI C2000 Digital Motor Control blocks
are used to design motion control systems
based on AC induction, brushless DC,
PMSM, and stepper motors.
Embed provides both 16- and 32-bit
digital motor control blocks, including
PIDs, 3-Phase PWM drivers, space
vector waveform generators, Park and
Clarke transforms, volts-to-hertz profiles,
sensorless flux and rotor speed estimation,
and quadrature-encoder-based speed
calculators.

Sample diagrams are included with Embed
for sensored and sensorless vector control
of PMSM and AC induction motors.

On-Chip Peripheral Block Libraries
The target-specific blocks let you easily
program on-chip devices. These blocks
include analog ADC, ePWM, eCAP (event
capture), SPI, SCI (RS232 serial), I2C,
digital GPIO, QEP(quadrature encoder),
and CAN 2.0.

CAN Bus Support: CAN bus blocks

offer an extensive range of capabilities to
support the development of systems with
CAN communication.

The CAN transmit and receive blocks
support up to 32 CAN mailboxes on the TI
C2000 series. Baud rates to 2 megabits
are supported. Mailboxes are configurable
from 0- to 8-byte data packet size. User-
configurable addressing can be 11 or 23
bits. Remote frame requests and auto-
answer are also supported.

Scaled, Fixed-Point Algorithms
The Fixed-Point block set lets you perform
simulation and efficient code generation of
scaled, fixed-point operations.

Overflow and precision loss effects are
easily seen and corrected at simulation
time. Auto-scaling speeds fixed-point
development, while in-line code generation
creates fast target code.

eMotor Block Library
The eMotor library consists of over 40
customizable blocks. These blocks include
amplifiers, controllers, filters, loads,
motors, sensors, sources, and transforms.
They are implemented in floating point,
making them ideal for simulating a

motor and controller in Embed before
downloading the code to an embedded
target.

Off-line Simulation
During initial simulation of the controller
and plant, you can verify, debug, and
tune your control algorithms, and view the
results interactively in graphical plots.

This step lets you interact with and assess
the simulated controller and the simulated
plant.

Automatic Code Generation
Once the model is verified, you can
automatically generate code for the
controller and download the code to the
target device. The code is optimized for
speed and memory usage.

You can execute the generated code with
your plant model within Embed to verify
successful translation of model to code.

Efficient ANSI C Code
Embed generates efficient and compact
ANSI C code for discrete, continuous, and
hybrid systems.

Target support includes a report that
displays the COFF section sizes of the

Use the collapsible Block Browser in the left
windowpane to drag target-specific blocks to a
diagram.

Right-click over a block
to access customizable
parameters and options.

3

generated execution file. For example,
code generated for closed-loop motor
controlincluding, PI controller,
digital output, PWM, and encoder
peripheralsruns at 300KHz on a 150MHz
F28335 DSC. The memory footprint is:

Code size: 2095 bytes

Initialized data: 501 bytes

Uninitialized data: 504 bytes

Processor-in-the-Loop Simulation
During PIL simulation, the controller
algorithm is converted to code and
executed on a target MCU while the plant
diagram remains in the source diagram
on the host. Real-time communication
between the target and host is performed
via a HotLink (JTAG or serial) interface.
The Embed GUI is retained while you
change controller gains and plot responses
from the target.

In most situations, the controller is
designed within a compound block with
input and output signals flowing through its
pins. For most MCUs, a small footprint, low

jitter, real-time operating system (RTOS)
is automatically generated and included in
the executable code. After the executable
code with RTOS has been created, it is
automatically loaded onto the target. Once
loaded, the code can run in either stand-
alone mode or under host control.

Hardware-in-the-Loop Simulation
During HIL simulation, the PIL is extended
to include the plant hardware, sensors,
and actuators. Often, however, it may not
be feasible or even possible to include the
entire plant, all the actuators, and all the
sensors. In these situations, some of the
sensors, actuators, and parts of the plant
(as they become available) are included as
HIL devices with the remainder simulated
in models executing on the host.

Like in the PIL phase, automatic code
generation of the control algorithm is
loaded and executed on the target while
the host is used to model the parts
of the plant for which hardware is not
available, as well as to interactively adjust
parameters of the control algorithm and

Embed model of a 400 kHz digital buck voltage converter that uses
a built-in optimizer to tune the PI control against the simulated buck
circuit (left). Once the controller gains are tuned, the embedded
control is created with ADC input synchronized to the PWM output,
along with background tasks to monitor temperature and set status
LED bank (below, left). Embed auto-code generation creates the C file
used to implement the control on the target (below).

capture and present signal time history
data.

The HIL phase always executes in real
time. Even though the entire plant may
not be actual hardware, the ability to
test plant components (hydraulic pumps,
lines, accumulators, actuators, electric
servos, pneumatic actuators, and so on)
in the controlled environment of the HIL
greatly improves the level of confidence in
meeting the design requirements.

Debugging Models
An Embed diagram can run directly on the
PC, or you can generate code from the
diagram that is linked with the Altair Visual
RTOS to create an executable application
that runs on a target MCU. The HotLink
bidirectional communication link connects
the generated application running on the
target with Embed running on the PC
providing HIL capability.

Generated code is syntactically error
free; however you may have bugs in your
diagram, depending on the algorithm
memory requirements, target hardware

4

constraints, and throughput requirements
of the algorithm. Embed provides a
collection of debug tools to investigate and
solve each of these issues.

Execution Control
The Start, Stop, Step, and Continue
controls work on the diagram executing
on the PC. If the target interface block is
set to synchronous operation, the target
application stops and single steps as well.

Probing Signal Values
Signal values are viewed by hovering over
a signal connector, or connecting a display
block to any output. Likewise plots can
display output traces interactively.

State Chart Breakpoints
You can set breakpoints on state events
or transitions. After a breakpoint is hit, the
simulation pauses and you can single step
through the state chart.

Monitor Register Values
Use the Extern block to display hardware
register values on the target. These
values can be sent over the HotLink and
displayed in plot or display blocks.

Event Statistics
You can record the number of times
a compound block is executed in a
simulation or target application by creating
an iteration counter and sending the
counter value over the HotLink.

Execution Timing
Knowing the level of target CPU utilization
for each conditionally executed subsystem
is important in embedded applications.
Applications that consume too much CPU
are prone to overframing, when not all
the control functions are fully executed
and completed in the sample time allotted
for the controller. CPU utilization can be
measured at the system level or within any
conditionally executed compound block.

Digital Scopes
You can capture data on the target and
send it to a buffer. Once the buffer is full,
the data is sent to the PC where it can be
viewed in plots.

Code Analysis Wizard

The Code Analysis wizard analyzes
diagrams for issues that can cause
performance degradation—including
divides, matrix usage, floating-point
transfer functions—in the embedded
application and provides suggestions on
how to improve performance when these
type issues are detected.

Heap and Stack Usage and Measurement
After allowing the target to execute with
ample runtime to exercise all significant
functions, you can report the maximum
stack and heap usage encountered during
target execution.

Code Placement Control
Code can be placed in specific memory
segments, and you can declare data and
associate it with a memory segment using
C syntax (compiler dependent).

Profile matching
The response profiles produced by
applying identical command signals
to both the simulation model and the
target application can be compared. Any
differences indicate the need for further
debugging. Target application response
profiles collected from the target are
transmitted to the host over the HotLink
interface and compared with simulation
model response profiles.

INTERNET OF THINGS
Embedded development for IoT has
unique considerations—peripheral
programming, communication protocols,
battery life awareness, OTA updates, and
security—that are safely addressed with
Embed.

Peripheral programming and
communication protocols
With built-in support for MQTT, JSON,
serial UART, I2C, SPI and HTTP, Embed
makes it easy to communicate with other
IoT devices. Drivers for these devices
are built into the Visual RTOS. This
significantly reduce the time and effort
needed to develop your IoT algorithms.

Battery Life Awareness

Most IoT devices have batteries, each with
their own battery life cycle. Embed has
modules that track battery SOC (state-of-
charge) and SOH (state-of-health), as well
as algorithms to charge the battery in a way
to maximize battery life.

OTA
Over-the-air firmware drivers are easily
integrated into your IoT application using
Embed’s Extern block set.

Security
There is an explosion of IoT devices on the
internet today and the ease of breaching
their security is proving to be a major
weakness. Altair Embed’s use of protocols—
like MQTT—provide encrypted data
transmission secured by digital certificates.
Additionally, using MCU devices that have
no file system reduces the attack surface for
hackers.

SOURCE CODE LIBRARIES
You may be required to run verification tools
on all the code for your embedded projects.
Or, your contractual obligations require
100% ownership of the source code. Embed
provides (at an additional cost) two Source
Code Libraries:

• 	The Core Source Code Library contains
pre-compiled functions for core blocks that
are not translated into inline code.

• 	The Target Source Code Libraries
contain pre-compiled functions for target-
specific blocks that are not translated
into inline code. There is a Target Source
Code Library for each target family.

These libraries are provided because
Embed does not translate all core and
target-specific blocks into 100% inline
code. The blocks that are not translated are
included as pre-compiled functions in the
Source Code Libraries.

Using the Core Source Code Library for
Unsupported Platforms
You can extend Embed to target
unsupported platforms using the Core
Source Code Library. The generated
fixed-point and floating-point code can be
compiled on any platform with an ANSI C
compiler.

5

Embedded Blocks

Fixed Point Blocks
abs
and
atan2
const
convert
cos
div
gain
limit
limitedIntegrator
merge
mu
not
or
PI Regulator
PID Regulator
sampleHold
shift
sign
sin
sqrt
sum
transferFunction
unitDelay
xor
-X
>
<
<=
>=
==
!=

Target-Specific Blocks
ADC10/12
Analog Comparator DAC
Analog In
Analog Input
Analog Out
Analog Output
CAN Transmit
CAN Transmit Ready
CAN Receive
Comparator
DAC
DAC12
Digital In
Digital Input
Digital Out
Digital Output

Target-Specific Blocks
DMA Enabled
eCAP
eCapPW M
ePWM
ePWM Action
ePWM Action Write
ePWM Chopper
ePWM Force Action
ePWM Force Action Write
eQEP
Event Capture
Extern Furnction
Extern Read
Extern Write
fullCompareAction
fullComparePWM
GPIO In
GPIO Input
GPIO Out
GPIO Output
HRCap
I2C Start Communication
I2C Read Buffer
I2C Write Buffer
I/O memoryRead
I/O memoryWrite
JSON
LCD
LCD Control
Monitor Buffer Empty
Monitor Buffer Read
Monitor Buffer Write
MQTT Publish
MQTT Subscribe
opAmp
PWM
QuadratureEncoder
SD16
SD16A
Segment LCD
Serial UART Read
Serial UART Write
Sigma Delta Filter Module
SPI Read
SPI Write
targetInterface
watchDog

SUMMARY OF BLOCKS

Digital Motor Control Blocks
ACI Motor
ACI Speed Estimator
ACI Flux Estimator
Clarke Transform
Current Model
Inverse Clark Transfrom
Inverse Park Transform
Park Transform
Phase Voltage Calc
PID Regulator
QEP Speed
Ramp Generator
Resolver Decoder
SMO Position Estimator
Space Vector Generator (Mag/Freq)
Space Vector Generator (Quad Control)
Space Vector PWM
Speed Calculator
V/Hz Profile Generator

eMotor Blocks
Amplifiers
Controllers
Filters
Loads
Motors
Sensors
Sources
Tools
Transforms

WHERE TO GO FROM HERE
To learn more about Embed or

Embed SE, talk to your ESS
sales representative or go

online to download a free trial
of the software.

6

Contact us now for more information on the
Embed product line.
Phone:

Email:

http://www.embeddedindia.com/

© 2020 Embedded Systems Solutions. Altair Embed is a registered trademark of Altair Engineering.
All other products listed in this document are trademarks or registered trademarks of their respective
companies.

Founded in 1996, Embedded Systems Solutions (ESS) has been a leading
one-stop provider of hardware and software solutions for the embedded
real-time systems market..

ESS is an Electro Systems Associates (ESA) group company. ESA was
incorporated in 1986 by a small group of highly qualified technocrats with
sound business acumen and strong technical skills.

ESS is particularly well known for in-depth expertise and vast experience
with real-time embedded systems and development tools.

ESS partners with technology experts and leaders worldwide to bring
together a tools ecosystem of highly integrated embedded hardware and
software solutions for the Indian market.

ESS product portfolio has a range of offerings from Embedded
Development Suites and Debuggers, Embedded Middleware, Embedded
Security Solutions, In-Circuit Debuggers and Emulators, Flashers and
Programmers, Connectivity Solutions, Protocol Analyzers, Storage
Emulation Tools, Digital Storage Oscilloscopes, JTAG Boundary
Scan Tools, Model-Based Design and Development Tools, Hardware
Subsystems, and Single-Board Computers, among many others product
offerings.

This synergetic tools ecosystem offers comprehensive solutions for design,
development, and debugging processes in embedded systems.

About Embedded Systems Solutions

98450 83528

altairsales@embeddedindia.com

